Finding the k-best Equivalence Classes of Bayesian Network Structures for Model Averaging
نویسندگان
چکیده
We develop an algorithm to find the k-best equivalence classes of Bayesian networks. Our algorithm is capable of finding much more best DAGs than the previous algorithm that directly finds the k-best DAGs [1]. We demonstrate our algorithm in the task of Bayesian model averaging. Empirical results show that our algorithm significantly outperforms the k-best DAG algorithm in both time and space to achieve the same quality of approximation. Our algorithm goes beyond the maximum-a-posteriori (MAP) model by listing the most likely network structures and their relative likelihood and therefore has important applications in causal structure discovery. BACKGROUND Bayesian Model Averaging
منابع مشابه
Bayesian Model Averaging Using the k-best Bayesian Network Structures
We study the problem of learning Bayesian network structures from data. We develop an algorithm for finding the k-best Bayesian network structures. We propose to compute the posterior probabilities of hypotheses of interest by Bayesian model averaging over the k-best Bayesian networks. We present empirical results on structural discovery over several real and synthetic data sets and show that t...
متن کاملLearning Equivalence Classes of Bayesian Network Structures
Two Bayesian-network structures are said to be equivalent if the set of distributions that can be represented with one of those structures is identical to the set of distributions that can be represented with the other. Many scoring criteria that are used to learn Bayesiannetwork structures from data are score equivalent; that is, these criteria do not distinguish among networks that are equiva...
متن کاملComparison of Artificial Neural Network, Decision Tree and Bayesian Network Models in Regional Flood Frequency Analysis using L-moments and Maximum Likelihood Methods in Karkheh and Karun Watersheds
Proper flood discharge forecasting is significant for the design of hydraulic structures, reducing the risk of failure, and minimizing downstream environmental damage. The objective of this study was to investigate the application of machine learning methods in Regional Flood Frequency Analysis (RFFA). To achieve this goal, 18 physiographic, climatic, lithological, and land use parameters were ...
متن کاملBayesian Model Averaging and Model Selection for Markov Equivalence Classes of Acyclic Digraphs
Acyclic digraphs (ADGs) are widely used to describe dependences among variables in multivariate distributions. In particular, the likelihood functions of ADG models admit convenient recursive factorizations that often allow explicit maximum likelihood estimates and that are well suited to building Bayesian networks for expert systems. There may, however, be many ADGs that determine the same dep...
متن کاملEnumerating Equivalence Classes of Bayesian Networks using EC Graphs
We consider the problem of learning Bayesian network structures from complete data. In particular, we consider the enumeration of their k-best equivalence classes. We propose a new search space for A* search, called the EC graph, that facilitates the enumeration of equivalence classes, by representing the space of completed, partially directed acyclic graphs. We also propose a canonization of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014